Trust: A Model for Disclosure in Patent Law

Ari Ezra Waldman
New York Law School, ari.waldman@nyls.edu

Follow this and additional works at: https://www.repository.law.indiana.edu/ilj

Part of the Entrepreneurial and Small Business Operations Commons, Fourth Amendment Commons, Intellectual Property Law Commons, Privacy Law Commons, Science and Technology Law Commons, and the Technology and Innovation Commons

Recommended Citation
Available at: https://www.repository.law.indiana.edu/ilj/vol92/iss2/4
How to draw the line between public and private is a foundational, first-principles question of privacy law, but the answer has implications for intellectual property, as well. This project is one in a series of papers about first-person disclosures of information in the privacy and intellectual property law contexts, and it defines the boundary between public and nonpublic information through the lens of social science—namely, principles of trust.

Patent law’s public use bar confronts the question of whether legal protection should extend to information previously disclosed to a small group of people. I present evidence that shows that current application of the public use bar privileges the confidentiality and control norms of industry while minimizing those no less strong norms common to lone entrepreneurs. This results in a general pattern: corporate inventors tend to win their public use cases; solo entrepreneurs tend to lose them. As a result, the public use bar has unintended negative effects, including discouraging experimentation and discriminating against inventors without the financial backing of corporate employers. These results are the direct effects of how courts determine the difference between public and nonpublic uses.

This project proposes a new way of talking about, thinking through, and determining when previous disclosures bar subsequent patentability. In short, I argue that invention disclosures in contexts of trust retain their legal protection despite any ostensible loss of control or lack of formal confidentiality agreements. This proposal respects social network differences and will advance the goals of patent law and increase access to the innovation economy for all persons.

INTRODUCTION

I. PATENT LAW’S DENIAL OF SOCIAL RELATIONSHIPS

A. THE PUBLIC USE BAR AND PRIVACY-AS-CONTROL

B. THE UNEVEN APPLICATION OF THE PUBLIC USE BAR

1. THE PRIVILEGED POSITION OF THE CORPORATE INVENTOR:
 CONFIDENTIALITY AGREEMENTS

* Copyright © 2017 Ari Ezra Waldman.
† Associate Professor of Law and Director, Innovation Center for Law and Technology, New York Law School. Affiliate Scholar, Center for Information Technology Policy, Princeton University. PhD, Columbia, 2015; JD, Harvard Law School, 2005. This project developed out of a chapter in the author’s doctoral dissertation at Columbia University’s Department of Sociology. Thanks to Derek Bambauer, Barton Beebe, Gaia Bernstein, Rochelle Dreyfuss, Gil Eyal, Brett Frischmann, Jeanne Fromer, David Levine, Gregory Mandel, Bill McGeveran, Christina Mulligan, Frank Munger, Mark Patterson, Sadiq Reza, Michael Risch, Bhaven Sampat, Jake Sherkow, Eva Subotnick, Ruti Teitel, Rebecca Tushnet, and John Whealan for advice and insight. Along the way, versions of this paper were presented at the 2015 Works-in-Progress Intellectual Property Conference, the 2015 Intellectual Property Scholars Conference at DePaul University College of Law, the New York Law School Faculty Colloquium, and at the 2016 Tri-State Region IP Workshop at NYU School of Law. Feedback from participants at those conferences improved the draft immensely. Jeffrey Saavedra provided essential research assistance. I am the first to disclose that all errors are my own.
A variety of claims depend on whether information previously disclosed to another is still legally protectable as private. For example, a victim of nonconsensual pornography, commonly known as “revenge porn,” may sue for public disclosure of private facts. But the success of her claim hinges on whether she retains a privacy interest in a picture that she may have voluntarily texted to another. A Fourth Amendment challenge to the admission of a defendant’s cell site data at trial may fail because previous disclosure of that data to the phone company extinguishes the defendant’s reasonable expectation of privacy. And, in certain cases, retention of attorney-client privilege after a disclosure to a third party depends on whether the third party was truly an unrelated member of the public or a close ally in litigation.

The boundary between public and private is a foundational question of privacy.

1. See Danielle Keats Citron & Mary Anne Franks, Criminalizing Revenge Porn, 49 WAKE FOREST L. REV. 345, 357–59 (2014) (noting the possibility of nonconsensual pornography victims using the tort of public disclosure of private facts, but also highlighting the barriers to success for victims using tort law); see also Ari Ezra Waldman, A Breach of Trust: Fighting “Revenge Porn,” 102 IOWA L. REV. 709, 713 (2017) (proposing the use of the tort of breach of confidentiality in some revenge porn cases).

3. See, e.g., United States v. Davis, 785 F.3d 498, 507–09, 511–12 (11th Cir. 2015); In re Application of United States for Historical Cell Site Data, 724 F.3d 600, 602–03 (5th Cir. 2013). But see United States v. Jones, 132 S. Ct. 945, 957 (2012) (Sotomayor, J., concurring) (concurring in the result holding that GPS tracking on public streets was a Fourth Amendment search and arguing that it is “necessary to reconsider the premise that an individual has no reasonable expectation of privacy in information voluntarily disclosed to third parties”).

4. See United States v. Kovel, 296 F.2d 918, 921–22 (2d Cir. 1961) (recognizing that disclosure to a nonlawyer could still permit protection of the privilege in limited circumstances).
law. But the question of when information remains legally protectable despite previous disclosure is not the exclusive realm of those writing about privacy; intellectual property lawyers have an interest in this fight, as well.

Section 102 of the Patent Act, as amended recently by the America Invents Act (AIA), states that an invention “in public use” or “disclosed” or “otherwise available to the public” for more than one year prior to filing an application for the patent will not be considered novel and, thus, not eligible for a patent. What is a public use under the Patent Act, then, depends on drawing the line between public and private.

And where we draw the line matters: In 2008, the last year of AstraZeneca’s patent on Prilosec, for example, the company reported more than $800 million in sales after beating back claims that its patent was invalid for prepatenting public use. Public use bar cases have also determined ownership over multimillion dollar products like the Rubik’s Cube, which has sold more than 350 million units since 1980. In addition to helping determine the fate of millions of dollars in revenue, the public use bar’s application defines the boundaries of experimentation, which could mean the difference between functioning and nonfunctioning widgets, drugs, and machines.

This Article bridges a gap between privacy and intellectual property scholarship and proposes a conceptual and practical framework for determining when a previously disclosed invention is still patentable. In short, it depends on social network norms and relationships of trust: when the relationship between the parties is characterized by trust and expectations of confidentiality, information disclosed should remain protected.

Currently, public use case law links publicness with the inventor’s loss of control over her invention prior to patenting. In this way, one of the dominant conventional theories of privacy—privacy as the right to control what others know about you—is
reflected in patent law’s novelty jurisprudence. This theory is an affirmative right located within the individual that embraces principles of autonomy and choice. It separates the private and public worlds with retention and loss of control over information, respectively.

As a means of determining the extent of personal privacy rights, a doctrine based on control and secrecy is problematic. Its bright-line rule extinguishes our privacy interests when any third party knows something about us, an increasingly common phenomenon in a networked world. As a means of determining the difference between public and nonpublic uses and disclosures under the Patent Act, the notion of control discourages experimentation and innovation and frustrates the goals of patent law generally. As implemented, the standard is also discriminatory. It privileges wealthy and corporate inventors over other innovators by relying too heavily on executed confidentiality agreements and the confidentiality norms of corporate actors. As a result, by disrespecting how many entrepreneurs commonly interact with others, the public use bar entrenches wealthy interests and excludes other entrepreneurs from the innovation economy.

Relying on research into social networks and interpersonal trust, this Article proposes a new way of talking about, thinking through, and determining when previous disclosures bar subsequent patentability. I argue that disclosures in networks characterized by trust retain their privacy interests despite any ostensible loss of control or lack of formal confidentiality agreements. I have called this proposal “privacy-as-trust,” and I apply it from the privacy context to the public use bar. Trust, defined as a resource of social capital between or among two or more persons concerning the expectations that other members of their community will behave according to accepted norms, is the defining feature of social interaction. It is, I have argued, the catalyst for an individual’s decision to disclose otherwise private information. Because we share when we trust and because trust is a contextual social phenomenon, it makes intuitive sense to distinguish between public and private uses or disclosures along these lines using a totality of the circumstances test.

conceptualizations of privacy vary wildly, the conventional wisdom is really two sides of the same coin. For some, the private world represents freedom from society; for others, privacy gives us the individual freedom for autonomous lives of free choice. All are based on the same respect for the individual as the locus of the privacy right, and all are burdened by limitations: some are overinclusive, while others are underinclusive; some are too elastic, while others are egregiously rigid. See Waldman, supra note 5, at 565–88.

13. Id. at 42–43, 143.

Applying privacy-as-trust to the public use context has several advantages: it is egalitarian, flexible, practical, and faithful to the policy objectives of patent law. By respecting the confidentiality norms of different social groups, privacy-as-trust would help rebalance public use jurisprudence among all types of inventors. It is also flexible enough to accommodate myriad different social contexts, many of which are characterized by such strong notions of confidentiality that formal agreements are unnecessary. The standard is also administrable on a case-by-case basis, offering clear opportunities for the admission of evidence of expectations of social network confidentiality alongside myriad other cues of nonpublic disclosure. And it will advance the policy goals of patent law by protecting inventors’ rights, encouraging experimentation, and freeing up public information for future use.

What’s more, this proposal is not as radical as it seems. Social network theory and trust are already at play throughout intellectual property law. We see respect for social networks in patent law’s enablement requirement, which is defined relative to someone of “ordinary skill in the art” of the invention. Copyright law’s originality requirement is genre specific, recognizing that originality and creativity mean different things for different cultural artifacts. And trademark law accepts that two companies can use similar marks as long their products, marketing channels, and consumer markets remain in separate networks. Trade secret law goes even further.

This Article proceeds in three parts. Part I surveys and analyzes public use case law and makes two related arguments. First, that control over information has so far been the dominant standard for determining when prepatenting disclosures implicate the public use bar. Second, as implemented, the standard discriminates against noncorporate entrepreneurs by privileging the confidentiality norms of corporate actors over the distinct norms and practices of other social networks. This section also criticizes the logical failure of a disclosure standard that ignores the relationships between the parties involved. To resolve that central failure, Part II proposes a new standard. Using social networks theory and social science evidence on information flow and trust, this Article argues that privacy-as-trust is a fair and administrable way to draw the line between public and nonpublic first-person disclosures in patent law. The doctrine holds that information disclosed in a context of trust, based on network-specific norms of confidentiality, custom, and the entirety of the social context of disclosure, is not public and, thus, is still protectable as private. This Part concludes by showing the advantages of this proposal. Part III returns to several of the public use cases discussed in Part I and applies privacy-as-trust to these real contexts. Sometimes, though not always, results would change under the new standard; in all cases, privacy-as-trust is fair, egalitarian, and loyal to the goals of patent law. I respond to several anticipated objections and conclude with recommendations for future research.

I. PATENT LAW’S DENIAL OF SOCIAL RELATIONSHIPS

To get a patent, your invention must be novel. To be novel, it cannot have been in public use, disclosed, or otherwise available to the public more than one year prior

The purposes of the public use bar are noble ones: to incentivize prompt disclosure, to discourage inventors from commercializing their products while keeping prior art out of the public domain, to give inventors a reasonable amount of time to determine the market for their products, and to protect the public domain.19 If, as several leading patent scholars have argued,20 the recent America Invents Act amendments do not change the meaning of the novelty requirement, patent law’s publicity triggers will continue to be based either on a secrecy paradigm21 or, in the case of the public use bar, on the extent to which an inventor retains control over her invention during prepatenting use.

In practice, however, the public use rule—that loss of control means public use—generally overemphasizes the importance of formal confidentiality agreements and commonly ignores the confidentiality norms of noncorporate and noncontractual social relationships. As such, the public use bar privileges corporate, wealthy, and established inventors for whom contracts and nondisclosure agreements come easily. And it makes it difficult for other types of entrepreneurs to test and market their inventions.

In this section, I summarize the law of public use, show how similar it is to one of the dominant theories of privacy, and then show its uneven application using a series of illustrative public use cases. I conclude with a short discussion of how current application of the public use bar tends to institutionalize corporate privilege and limits entrepreneurs’ access to the innovation economy.

\textbf{A. The Public Use Bar and Privacy-as-Control}

Federal Circuit case law states that lack of control is the shibboleth of public use:

\begin{itemize}
\item 18 35 U.S.C. § 102(a)–(b) (2012).
\item 20 See Lemley, supra note 6; Robert P. Merges, \textit{Priority and Novelty Under the AIA}, 27 BERKELEY TECH. L.J. 1023 (2012).
\item 21 See Solove, supra note 12, at 42–47 (introducing, describing, and ultimately critiquing the “secrecy paradigm” in privacy jurisprudence). The “secrecy paradigm” is evident in the Federal Circuit’s interpretation of § 102(a) of the Patent Act of 1952 in that anything not secret is public. As the court stated recently in \textit{In re Enhanced Security Research, LLC,} § 102 has always been interpreted “broadly.” 739 F.3d 1347, 1354 (Fed. Cir. 2014). “[E]ven relatively obscure documents,” like a single copy of a graduate thesis buried in a German university library, “qualify as prior art so long as the public has a means of accessing them.” \textit{Id.} (citing \textit{In re Hall}, 781 F.2d 897, 899, 900 (Fed. Cir. 1986)). The Federal Circuit made a similar conclusion in \textit{W.L. Gore & Assocs., Inc. v. Garlock, Inc.}, where it found that the process for rapidly stretching Teflon without it breaking was publicly used even though it was only used inside Gore’s shop. 721 F.2d 1540, 1549 (Fed. Cir. 1983). And, of course, the famous and oft-cited \textit{Egbert v. Lipmann}, which held that a woman was publicly using a corset invented by her fiancé even though she was wearing the only prototype under her clothes, is a paradigmatic example of the secrecy paradigm, as well. 104 U.S. 333, 335 (1881).
\end{itemize}
a public use occurs when an inventor allows others to use her invention without retaining control over the device. In a nod to the connection between public use and privacy, the court has noted that control depends on whether the inventor retained a “legitimate expectation of privacy and of confidentiality.” Like privacy questions, then, public use claims require judges to determine when an expectation of privacy exists. And like an individual’s expectations of privacy, whether an inventor retained control over her invention is supposed to be based on a variety of nondeterminative factors. In the public use context, those factors include: what the inventor did to share her invention, the public’s access to and knowledge of the invention, whether the inventor imposed confidentiality obligations on those present, and evidence of experimentation. The one factor ostensibly focused on the relationship between the inventor and the public—the presence of confidentiality or secrecy obligations—is supposed to be flexible: a formal nondisclosure agreement is not required. As we shall see, that flexibility is unevenly applied.

Experimental use, which is supposed to negate a finding of public use, is also determined via a variety of factors, including the number of prototypes being tested, the duration of those tests, the existence of records and secrecy agreements, compensation, and retention of control by the inventor. That the multifactor tests overlap is telling. Public use is most appropriately determined in context on a case-by-case basis because each disclosure occurs in a unique set of circumstances.

But at the core of public use law is the control the inventor retains over her invention. And an inventor’s choice to give up control is the salient factor in nudging a court toward a finding of public use. The Supreme Court made this clear in 1877. In *Elizabeth v. Pavement Co.*, the Court stated that as long as an inventor “does not voluntarily allow others to make [the invention] and use it, and so long as it is not on sale for general use, he keeps the invention under his own control, and does not lose his title to a patent.” This cause-and-effect relationship between voluntary disclosure and erosion of control is the hallmark of modern public use law, as well.

In *Lough v. Brunswick Corp.*, for example, the Federal Circuit invalidated a patent for boat motor seals because the inventor gave away his invention, installed it on another’s boat, and failed to keep track of the test boat’s operation with the

22. Molecuilon Research Corp. v. CBS, Inc., 793 F.2d 1261, 1266 (Fed. Cir. 1986) (finding nonpublic use because the inventor had at all times “retained control” over the device during prepatenting demonstrations).

23. *Id.* at 1265.

29. 97 U.S. 126 (1877).

30. *Id.* at 135.

31. 86 F.3d 1113.
installed prototype. In *Beachcombers International, Inc. v. WildeWood Creative Products*, a designer lost her patent for a new kaleidoscope because she chose to demonstrate the invention for party guests and allowed them to handle and use it. And in *Baxter International, Inc. v. Cobe Laboratories*, an inventor lost control of his invention (and thus lost his patent) not only because he demonstrated his new centrifuge for others, but also because he allowed a free flow of bodies through his lab that housed the device. In these and many other cases, the Federal Circuit took away patents because inventors had voluntarily given over their inventions to others and, in so doing, made the decision to give up control over their devices.

In this way, patent law’s public use bar reflects one of the dominant conceptualizations of privacy: privacy as choice and control. This is the theory that a right to privacy means having the right to control one’s personal information and the freedom to decide to share it with some and not others. The paradigm is pervasive, evident in leading works of privacy scholarship and a multitude of privacy cases. And the language scholars and judges use to describe privacy is reminiscent of the Federal Circuit’s discussion of public use and control.

Privacy-as-control scholars could just as easily be speaking about individuals concerned about their privacy as inventors disclosing their devices. For instance, Jean Cohen has argued that privacy is the right “to choose whether, when, and with whom” to share intimate information. Alan Westin suggests that privacy “is the claim of individuals, groups, or institutions to determine for themselves when, how, and to what extent information about them is communicated to others.” It is, to Julie Inness, the idea that an individual has “control over a realm of intimacy” and, to Jonathan Zittrain, control over our information in general. For the philosopher Steve Matthews, exercising privacy is making the choice to “control” and “manage” the boundary between ourselves and others. The common denominator in all these descriptions is free choice and control, and it is the same dynamic at play in cases like *Elizabeth, Lough, Beachcombers, and Baxter*, just with different information.

Privacy-as-control is also evident in the current interpretation of the tort of public disclosure of private facts. Here, too, the comparison to public use analysis is striking. Although the tort’s often uneven application has spawned much debate and scholarship, an individual tends to lose control and, thus, a privacy interest, in

32. *Id.* at 1121.
33. 31 F.3d 1154 (Fed. Cir. 1994).
34. *Id.* at 1159–60.
35. 88 F.3d 1054 (Fed. Cir. 1996).
36. *Id.* at 1058–59.
42. RESTATEMENT (SECOND) OF TORTS § 652D (AM. LAW INST. 1977).
43. See, e.g., Lior Jacob Strahilevitz, *A Social Networks Theory of Privacy*, 72 U. CHI. L.
information once she has voluntarily divulged it to another or once the information is already publicly available. Like Oliver Sipple, who could not prevent the media from disclosing his sexual orientation after he had already disclosed it to friends in San Francisco, and like Ralph Nader, who could not prevent General Motors from gathering personal information already known to others as part of the company’s plot to discredit him, the inventors in Lough, Beachcombers, and Baxter could not put the cat back in the bag. Their inventions, either from voluntary disclosures (Lough and Beachcombers) or public availability (Baxter), were already out of their control and known and used by others.

B. The Uneven Application of the Public Use Bar

It seems evident, then, that the law of public use reflects the dynamics of privacy-as-control. That itself is problematic because it creates the potential for what Daniel Solove has called a “secrecy paradigm” to govern what should be a more flexible, case-by-case standard. In privacy law, the secrecy paradigm refers to the erroneous conflation of privacy and secrecy: it creates a bright-line rule that something is private if it is secret, but if it is known to even one other person, it is no longer secret and, thus, not protectable as private. It is at play all over the privacy spectrum, from tort law to the Fourth Amendment.

REV. 919 (2005); Waldman, supra note 5.

44. See, e.g., Sipple v. Chronicle Publ’g Co., 201 Cal. Rptr. 665, 669 (Cal. Ct. App. 1984) (finding that disclosure of Sipple’s sexual orientation to a group of people extinguished his privacy interests in the information upon subsequent disclosure to the broader public); Nader v. Gen. Motors Corp., 255 N.E.2d 765, 770 (N.Y. 1970) (“Information about the plaintiff which was already known to others could hardly be regarded as private”); Killilea v. Sears, Roebuck & Co., 499 N.E.2d 1291, 1295 (Ohio Ct. App. 1985) (“There is no liability when the defendant merely gives further publicity to information about the plaintiff that . . . the plaintiff leaves open to the public”). But see, e.g., Y.G. v. Jewish Hosp. of St. Louis, 795 S.W.2d 488, 501–02 (Mo. Ct. App. 1990) (finding that voluntarily attending a social gathering at a hospital with media in attendance did not vitiate privacy interest in family’s decision to use in vitro fertilization).

45. Sipple, 210 Cal. Rptr. at 668–69.

46. Nader, 255 N.E.2d at 770 (including information gleaned from interviews with friends and acquaintances).

47. Lough v. Brunswick Corp., 86 F.3d 1113, 1121 (Fed. Cir. 1996) (finding public use when inventor “provided the seal assemblies to friends”); Beachcombers Int’l, Inc. v. WildeWood Creative Prods., 31 F.3d 1154, 1159 (Fed. Cir. 1994) (finding public use when inventor voluntarily gave her kaleidoscope to party guests).

48. Baxter Int’l, Inc. v. Cobe Labs., Inc., 88 F.3d 1054, 1056, 1058–59 (Fed. Cir. 1996) (finding that the inventor showed others how the centrifuge worked and permitted free flow through his lab, allowing all who passed to see the device).

49. SOLOVE, supra note 12, at 42–47, 143–49.

50. See supra note 45 and accompanying text.

51. See, e.g., Smith v. Maryland, 442 U.S. 735, 735, 742 (1979) (finding that there is no reasonable expectation of privacy in numbers captured by pen register); United States v. Miller, 425 U.S. 435, 440–43 (1976) (finding that there is no reasonable expectation of privacy in bank records). The Third Party Doctrine, spawned by Miller, Smith, and their progeny, re-
It helps explain several public use cases, as well. In *Lough*, the inventor showed his device to five friends, who used it on their boats.\(^5\) And in the classic case of *Egbert v. Lippmann*,\(^6\) the Supreme Court stated that an “intimate friend” wearing a corset under her clothes constituted public use: “If an inventor . . . gives or sells it to another, to be used by the donee or vendee, without limitation or restriction, or injunction of secrecy, and it is so used, such use is public, even though the use . . . may be confined to one person.”\(^7\) The secrecy paradigm may have the benefit of clarity, but it imposes a harsh bright-line rule where case-by-case precision may be more appropriate.

The secrecy paradigm alone, however, fails to explain the majority of public use cases. As applied, public use law is less an indiscriminate blunt axe than a discriminatory scalpel. Sometimes, the Federal Circuit applies its rule that confidentiality agreements are just one factor to consider; elsewhere, nondisclosure agreements are treated as essential. And sometimes, norms of confidentiality are respected; at other times, they are ignored. The result sounds like a confusing muddle, but one distinct pattern emerges: corporate inventors tend to win their public use cases; solo entrepreneurs tend to lose.\(^8\)

50. It reflects the secrecy paradigm. The doctrine states that individuals cannot have a legitimate expectation of privacy in information in the hands of third parties. It is the subject of great criticism in the legal academy. See Daniel J. Solove, *Fourth Amendment Codification and Professor Kerr’s Misguided Call for Judicial Deference*, 74 FORDHAM L. REV. 747, 752–53 (2005). But see generally Orin S. Kerr, *The Case for the Third-Party Doctrine*, 107 MICH. L. REV. 561 (2009). 52. *Lough*, 86 F.3d at 1121. 53. 104 U.S. 333 (1881). 54. Id. at 335–36. 55. This Article uses the hierarchical clustering technique to distinguish between two clusters of inventors: (A) those that are supported by large corporate structures, and (B) those that invent in their spare time or without corporate resources. Cluster analysis is a method for grouping objects together in groups (clusters) based on their similarities across a series of variables. See Kenneth D. Bailey, *Cluster Analysis*, 6 SOC. METHODOLOGY 59, 61 (1975). It is a way of drawing boundaries around things that generally behave similarly and, as such, is widely applied in the social sciences, data mining, and even biology. See Brian S. Everitt, Sabine Landau, Morven Leese & Daniel Stahl, *Cluster Analysis* 1–13 (5th ed. 2011); Statistical Analysis of Gene Expression Microarray Data (Terry Speed ed., 2003); Andrew R. Webb, *Statistical Pattern Recognition* 361–62 (2d ed. 2002). For example, a sociologist may find that several characteristics (independent variables like age, location, and sex) help explain a given behavior (some dependent variable). Male urban youths ages thirteen to eighteen tend to behave similarly in one respect, while female suburban youths ages thirteen to eighteen behave similar to each other. The two groups can create two or more clusters, depending on the method of analysis and research goal. Cluster analysis does not suggest that all data points in a given cluster are identical or always behave similarly. Rather, they are similar across a closed subset of variables; they may behave differently across a different set of independent variables or relative to different dependent variables. There are myriad methods for determining clusters. Hierarchical clustering is based on the idea that objects are more related to objects nearby than objects far away. It employs algorithmic and graphical analysis to determine clusters. See B. S. Everitt, *Unresolved Problems in Cluster Analysis*, 35 BIOMETRICS 169, 170–77 (1979); Baibing Li, *A New Approach to Cluster Analysis: The Clustering-Function-Based Method*, 68 J. ROYAL STAT. SOC’Y 457, 457 (2006). For this...
Several cases, all of which are summarized in Table I, illustrate that argument: corporate inventors often do not need nondisclosure agreements; lone entrepreneurs do. And corporate norms of confidentiality—among employees and between companies in arm’s length dealing—are usually respected, whereas the more informal, but no less powerful confidentiality norms of social friends and other interpersonal networks are often ignored. This is another effect of using privacy-as-control in the public use context: because it offers no clear guidelines on what happens to information after it is no longer a literal secret, it allows judges to privilege certain forms of control over others.

<table>
<thead>
<tr>
<th>Case</th>
<th>Inventor Cluster (A=Corp. Inventor; B=Solo Entrepreneur)</th>
<th>Disclosure Event</th>
<th>Signed Secrecy or Confidentiality Agreement?</th>
<th>Public Use?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xerox Corp. v. 3Com Corp.</td>
<td>A (Inventor in course of employment for large company)</td>
<td>To chair of conference</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pronova BioPharma Norge AS v. Teva Pharmaceuticals USA, Inc.</td>
<td>A (For large chemical company)</td>
<td>Samples sent to doctor for testing</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Article, I plotted, in two-dimensional space, the relationship between inventor identity defined by connection to and invention support by an employer and public use result in the cases in Figure I. Relative size and strength of employer was based on available corporate revenue data from Bloomberg or Hoover.com. Cluster A consists of engineers, programmers, and other inventors employed by large corporations who invent devices in course of their employment and with the institutional support of their employers. Cluster A includes experts at Xerox, biochemists at large pharmaceutical companies, and mechanical engineers at Honeywell, for example. Cluster B consists of students, hobbyists, and experts inventing in their spare time. The members of these groups were similar to each other on the relevant variables. Three cases were eliminated from consideration because, given the facts, clustering would have been arbitrary. Subsequent research could probe whether some small- or medium-sized businesses are treated fairly in the public use context.

56. The cases analyzed in this Article were chosen from a Westlaw search for reported Federal Circuit and district court cases after January 1, 1985 with the following search: “public use” & patent. That search resulted in 304 cases. Because a relatively in-depth discussion of the public use bar was necessary for analyzing its application, cases where “public use” was merely mentioned and not discussed or discussed in passing were eliminated, reducing the data set to ninety-seven. A series of cases that seemed to hinge on the public use bar were actually “on sale” bar cases. Those were also eliminated from the data set, reducing the number to eighty-eight. For the remaining cases, only those cases where it was possible to identify any information about the nature of the parties, whether they fell into Cluster A or Cluster B, were included.
<table>
<thead>
<tr>
<th>Case</th>
<th>Inventor Cluster (A=Corp. Inventor; B=Solo Entrepreneur)</th>
<th>Disclosure Event</th>
<th>Signed Secrecy or Confidentiality Agreement?</th>
<th>Public Use?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernhardt, L.L.C. v. Collezion Europa USA, Inc.</td>
<td>A (President of one of the largest family-run furniture companies in United States)</td>
<td>Display at industry trade show</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dey, L.P. v. Sunovion Pharmaceuticals, Inc.</td>
<td>A (Big Pharma)</td>
<td>Clinical trials</td>
<td>Yes and No</td>
<td>No</td>
</tr>
<tr>
<td>Lough v. Brunswick Corp.</td>
<td>B (Repairman)</td>
<td>Installed on friends’ boats</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>MIT v. Harman Int’l Indus., Inc.</td>
<td>B (Students)</td>
<td>Testing and demos</td>
<td>No</td>
<td>Maybe</td>
</tr>
<tr>
<td>Minnesota Mining & Mfg. v. Appleton Papers Inc.</td>
<td>A (Company president)</td>
<td>Distributed to thousands of employees</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Beachcombers, Int’l, Inc. v. WildeWood Creative Prods., Inc.</td>
<td>B (Part-time inventor)</td>
<td>Demo and use for 20–30 invited guests at inventor’s home</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Baxter Int’l, Inc. v. Cobe Labs., Inc.</td>
<td>B (Researcher)</td>
<td>Demos and free flow through lab</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Moleculon Research Corp. v. CBS, Inc.</td>
<td>A (Graduate student, but large company defending validity)</td>
<td>Shown to friends, roommate, chemistry department colleagues, employer (who sent it to 50–60 toy companies)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Am. Seating Co. v. USSC Grp., Inc.</td>
<td>A (Spare-time inventor, but large company defending validity)</td>
<td>Demos to friends and colleagues for feedback</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>In re Hamilton</td>
<td>B (Lone inventor)</td>
<td>Test runs</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Nat’l Research Dev. Corp. v. Varian Assocs, Inc.</td>
<td>B (Graduate students)</td>
<td>Adviser disclosed to individual at conference</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Delano Farms Co. v. Cal. Table Grape Comm’n</td>
<td>A (Owners of large grape growing company)</td>
<td>Distributed grape varieties to friends/family</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Case</td>
<td>Inventor Cluster</td>
<td>Disclosure Event</td>
<td>Signed Secrecy or Confidentiality Agreement?</td>
<td>Public Use?</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>--</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Invitrogen Corp. v. Biocrest Mfg., L.P.</td>
<td>A (For large company)</td>
<td>Used internally in company</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Netscape Commc’ns Corp. v. Konrad</td>
<td>B (Staff scientist, part-time inventor)</td>
<td>Shown to colleague</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Motionless Keyboard Co. v. Microsoft Corp.</td>
<td>B (Part-time inventor)</td>
<td>Shown to friends and potential investor</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Petrolipe Corp. v. Baker Hughes Inc.</td>
<td>A (For large chemical company)</td>
<td>Testing</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Honeywell Int'l Inc. v. Universal Avionics Sys. Corp.</td>
<td>A (For large aviation company)</td>
<td>Demos of plane with reporter on board</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Allied Colloids Inc. v. Am. Cyanamid Co.</td>
<td>A (Large chemical company)</td>
<td>Testing process to win back commercial contract with city</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Eli Lilly & Co. v. Zenith Goldline Pharm., Inc.</td>
<td>A (Big Pharma)</td>
<td>Open clinical trials</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>JumpSport, Inc. v. Jumpking, Inc.</td>
<td>B (Hobbyist inventor)</td>
<td>Used by several neighbors in inventor’s backyard</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Manville Sales Corp. v. Paramount Sys., Inc.</td>
<td>A (Researcher in course of employment for large company)</td>
<td>Drawings distributed and invention testing in pilot</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Eolas Tech. Inc. v. Microsoft Corp.</td>
<td>B (Student)</td>
<td>Demos to 2 Sun Microsystems employees</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
1. The Privileged Position of the Corporate Inventor: Confidentiality Agreements

Courts tend to give corporate inventors the benefit of the doubt on their public use defenses. When the disclosing party is a corporate inventor, rules are generally flexible, seemingly applied with the goal of protecting the corporation’s patents. Non-disclosure agreements are rarely required and informal industry norms of confidentiality are often respected.

Of the twenty-five public use cases included in this analysis, ten involve Cluster A (corporate) defendants that won findings of nonpublic use despite disclosures occurring without formal confidentiality agreements. At the same time, ten Cluster B (solo entrepreneur) defendants faced the opposite result—no confidentiality agreement and a finding of public use. But beyond just the results, courts’ perspectives on the importance of formal confidentiality agreements also change based on the type of public use defendant. For corporate inventors, rules are flexible; for lone entrepreneurs, confidentiality agreements are constructively essential. In Dey, L.P. v. Sunovion Pharmaceuticals, Inc., a case involving two large pharmaceutical companies, the Federal Circuit determined that use of chronic obstructive pulmonary disease (COPD) medication in clinical trials did not constitute public use even though the subjects involved never signed confidentiality agreements. The court recognized that clinical trial subjects customarily do not sign confidentiality agreements; to require one in this case would ignore the contextual factors that implied a baseline of confidentiality regardless of any agreement. To reinforce that flexible approach, the court even admonished the district court below for its overly formalistic reliance on executed agreements. And in Bernhardt, L.L.C. v. Collezione Europa USA, Inc., where one of the largest family-owned furniture companies in the United

59. 715 F.3d 1351.
60. Id. at 1354.
61. Id. at 1357–58.
62. Id. at 1357.
63. 386 F.3d 1371 (Fed. Cir. 2004).
States displayed patented material at an industry trade show that did not require signed confidentiality agreements, the court noted that a formal secrecy agreement “is one factor to be considered” and immediately reframed the analysis as a totality of the circumstances test for inventor control in context.

But courts are rarely so charitable and flexible in cases involving Cluster B (solo entrepreneur) defendants. In Baxter International, Inc. v. Cobe Laboratories, Inc., for example, the Federal Circuit found that the use of a centrifuge by a National Institutes of Health researcher in his personal laboratory constituted disqualifying public use because he maintained no control over the device. The most important factor leaning against control seemed to be the fact that the inventor demonstrated the technology to colleagues without a confidentiality agreement or any indication that it should be kept secret. In Lough v. Brunswick Corp., a corrosion-proof seal for stern drives was tested on boats belonging to several of the inventor’s friends and colleagues. The court determined that the use was public because the inventor lacked any control over the seals: he asked for no follow up, did not supervise their use, and never asked his friends to sign confidentiality agreements. And in Massachusetts Institute of Technology v. Harman International Industries, Inc., inventors used their friends to test a car navigation system, but never required confidentiality agreements from them or corporate sponsors. In each of these cases, the lack of a confidentiality agreement between the parties, though ostensibly only one of many factors to consider, was always among the most important.

The narrative in Beachcombers, International, Inc. v. WildeWood Creative Products, Inc. makes the point even more clear. In that case, the designer and developer of an improved kaleidoscope wanted to solicit feedback on the design from her friends and colleagues. She invited twenty to thirty of them to a private party at her home for a demonstration and, without asking them to sign a confidentiality agreement, allowed her guests to handle the invention. The situation had all the indicia of a controlled social event: an invite-only guest list consisting of friends and

64. Id. at 1374.
65. Id. at 1379–80 (quoting Moleculon Research Corp. v. CBS, Inc., 793 F.2d 1261, 1266 (Fed. Cir. 1986)).
66. 88 F.3d 1054 (Fed. Cir. 1996).
67. Id. at 1059.
68. Id. at 1058–59 (reasoning that the inventor’s “lack of effort to maintain the centrifuge as confidential coupled with the free flow into his laboratory of people, including visitors to NIH, who observed the centrifuge in operation and who were under no duty of confidentiality” necessitated a finding of “public use.”).
69. 86 F.3d 1113 (Fed. Cir. 1996).
70. Id. at 1116.
71. Id. at 1120–21. “The last factor of control is critically important . . .” Id. at 1120.
73. Id. at 303–04.
74. 31 F.3d 1154 (Fed. Cir. 1994).
75. Id. at 1156, 1159.
76. Id. at 1159–60 (noting that the inventor “personally demonstrated the device to some of the guests for the purpose of getting feedback on the device; . . . she made no efforts to conceal the device or keep anything about it secret”); Brief for Defendant-Appellee, WildeWood Creative Prods., Inc. at 11, Beachcombers, 31 F.3d 1154 (No. 93-1258).
colleagues who were invited for the purposes of testing, experimentation, and feedback. The only thing missing was a formal secrecy agreement. Without it, though, the use was considered sufficiently public for two reasons: first, the kaleidoscope was out of the developer’s control during the party; second, she placed no restrictions on guests sharing what they learned.

The correlation may not be perfect: there are several examples listed in Table I where Cluster A defendants lose their public use cases in part because they failed to secure confidentiality agreements. But, in this case, the exceptions help prove the rule. Like those involving Cluster B defendants above, the opinions in these cases elevate formal secrecy agreements to almost determinative status. In *Pronova BioPharma Norge AS v. Teva Pharmaceuticals USA, Inc.*,77 for example, where a pharmaceutical company sent drug samples to an outside doctor for testing,78 the court’s holding highlighted the central importance of a confidentiality agreement, concluding the public use happened when samples were sent “with no confidentiality restrictions.”79 *Pronova* and cases like *Minnesota Mining and Manufacturing Co. v. Appleton Papers Inc.*,80 *Petrolite Corp. v. Baker Hughes Inc.*,81 and *New Railhead Manufacturing, L.L.C. v. Vermeer Manufacturing Co.*82 may not rest exclusively on the lack of formal confidentiality agreements. But the pattern is unmistakable: a non-disclosure contract is, in practice, more important than the black letter law would suggest.83

This is a boon to corporate inventors even when they lose. Although simple non-disclosure agreements are freely available online,84 solo entrepreneurs, part-time developers, and hobbyists lack the power and leverage to insist on confidentiality agreements from their business partners. Nor do they have the money to pay attorneys to draft professional ones. As courts and scholars have noted in the corporate and labor contexts, small businesses lack the bargaining power of large, entrenched interests.85 During its onboarding process for new hires, for example, Apple devotes

77. 549 F. App’x 934 (Fed. Cir. 2013).
78. Id. at 942.
79. Id. at 939.
80. 35 F. Supp. 2d 1138, 1149 (D. Minn. 1999) (“No 3M employee was asked to sign a secrecy agreement before using them. And 3M announced no special company-wide policy regarding [the invention’s] use or circulation.”).
81. 96 F.3d 1423, 1428 (Fed. Cir. 1996) (“Moreover, there was no evidence that Quaker had entered into any secrecy agreement with Sohio”).
82. 298 F.3d 1290 (Fed. Cir. 2002) (no confidentiality agreement).
83. See *Moleculon Research Corp. v. CBS, Inc.*, 793 F.2d 1261, 1266 (Fed. Cir. 1986) (stating that a formal confidentiality agreement is supposed to be just one of many non-determinative factors).
an entire week to confidentiality and requires employees sign several long, overlapping nondisclosure agreements and agree to abide by the company’s well-known lock-down and secrecy practices. A start-up would have difficulty attracting necessary talent if it copied Apple’s practice.

2. The Privileged Position of the Corporate Inventor: Norms of Confidentiality

Corporate privilege in public use law extends beyond a more flexible approach to formal confidentiality agreements. Indeed, the reason why so many Cluster A defendants that fail to secure secrecy commitments win their public use cases is because courts are willing to fill the gap left by a contract with industry norms and customs of confidentiality. They almost never do the same for Cluster B (solo entrepreneur) inventors. The unequal application is two steps back from what would have otherwise been a step forward toward a flexible, social network–oriented approach to public use.

A comparison of two cases—Bernhardt and Beachcombers—puts this corporate privilege in relief. Neither case featured signed confidentiality agreements, yet Bernhardt won its case, whereas the inventor in Beachcombers lost. Bernhardt owned several design patents for furniture, all of which were displayed in their entirety at an exhibition for industry in advance of a large annual trade show. The exhibition was by invitation only, and entry required identification at several points. Bernhardt representatives were also available to escort attendees around and answer questions. Attendees included sixty-nine of Bernhardt’s customers and newspaper reporters from Furniture Today. For the Federal Circuit, the lack of confidentiality agreements, the arguable commercial motive for inviting customers, and the presence of reporters did not make Bernhardt’s disclosure of its designs public. Rather, the entirety of the social context of disclosure suggested that norms of confidentiality were in place. The court’s conclusion is worth quoting in full:

While it is clear that [exhibition] attendees were not required to sign confidentiality agreements, . . . in the circumstances of this case, confidentiality agreements were unnecessary. At trial, Bernhardt presented the testimony . . . that although no confidentiality agreement was provided to Pre-Market attendees, “[i]t’s pretty well understood that confidentiality applies to premarket [sic].” . . . Pre-Market attendees have an incentive not to divulge Bernhardt’s designs, because they would not be able to participate if they divulged the Pre-Market designs . . . Pre-Market was

inequality of bargaining power between small businesses and large corporations and acknowledging that “[b]efore the [franchise] relationship is established, abuse is threatened by the franchisor’s use of contracts of adhesion presented on a take-it-or-leave-it basis”) (quoting E.S. Bills, Inc. v. Tzucanow, 700 P.2d 1280, 1288 (Cal. 1985) (Mosk, J., concurring)).

88. Id. at 1374.

89. Id. at 1379.
not open to the public, that the identification of attendees was checked against a list of authorized names both by building security and later at a reception desk near the showroom, that attendees were escorted through the showroom, and that attendees were not permitted to make written notes or take photographs inside the showroom.90

The evidence of industry confidentiality norms and expectations—that it is “pretty well understood that confidentiality applies to” the exhibition—came from Bernhardt’s general manager.91 The court did what it should: look at the entirety of the social context of a given disclosure and respect the norms of confidentiality emanating from that context.

The Federal Circuit changes its tune when the inventor is a solo entrepreneur. In \textit{Beachcombers}, for example, the designer of a new kaleidoscope disclosed her design in a context at least comparable, if not more private, to the exhibition in \textit{Bernhardt}. She hosted twenty to thirty friends and colleagues at an invite-only cocktail gathering at her home, demonstrated the kaleidoscope and its unique characteristics, and asked for feedback. No members of the press were present. Nor were customers invited; the inventor had no customers.92 Despite the contextual evidence of implied confidentiality and privacy—an invite-only social gathering at a private home with testimony from the inventor that the purpose of the event was to gain feedback—the court concluded that the demonstrations constituted invalidating public use based on testimony from one of the guests, contradicted by the inventor, that confidentiality was not implied.93 In other words, the court was comfortable with ignoring social norms and elevating the importance of a confidentiality agreement when the inventor was creating in her spare time.

If the disparate treatment of corporate and solo inventors is insufficiently clear from \textit{Bernhardt} and \textit{Beachcombers}, the contrast between \textit{Xerox Corp. v. 3Com Corp.}94 and \textit{National Research Development Corp. v. Varian Associates}95 is even starker. In \textit{Xerox}, a Cluster A case, a company employee developed, in the course of his employment, a technique for more efficient computer recognition of handwriting.96 The alleged invalidating public use was the inventor’s submission of a videotape of himself demonstrating the invention to chairpersons of an industry conference at which he wanted to present. No confidentiality agreement accompanied the videotape.97 But the court said this was not public use because industry norms said otherwise: “[a]s a matter of formal policy and procedure as well as professional courtesy and practice, [the conference] review committees treat every submission confidentially.”98 There may have been no binding secrecy agreement, the

90. \textit{Id.} at 1381 ([sic] in original) (citations omitted).
91. \textit{Id.}
92. \textit{Beachcombers Int’l v. WildeWood Creative Prods., Inc.}, 31 F.3d 1154, 1159–60 (Fed. Cir. 1994).
93. \textit{Id.} at 1160.
94. 26 F. Supp. 2d 492 (W.D.N.Y. 1998).
96. \textit{Xerox}, 26 F. Supp. 2d at 492–93.
97. \textit{Id.} at 493–94.
98. \textit{Id.} at 496 (first alteration in original) (emphasis omitted).
court noted, but conference organizers were “under a professional ethical obligation” to maintain confidentiality.\(^9\)

Such norms were ignored in *National Research Development Corp.* That case involved a graduate student who invented a method for improving nuclear magnetic resonance sample analysis,\(^10\) the “essence” of which was disclosed by the student’s adviser to a long-standing friend at a scientific conference.\(^11\) Admittedly, there may be a difference between disclosure to a conference organizer and an attendee, but the court in *National Research Development Corp.* emphasized the lack of a confidentiality agreement and the conference goal of encouraging open dialogue rather than the norms of confidentiality inherent in friendship and at academic conferences.\(^12\) The former set of considerations went unmentioned in *Xerox*, highlighting both the contrasting result and perspectives and language that appear to differ based on the category of the inventor.

C. Implications of Uneven Application of the Public Use Bar

That courts tend to treat corporate inventors and solo entrepreneurs differently is itself a concern. Our laws, in general, and intellectual property laws, in particular, should be applied dispassionately, evenly, and absent discrimination. There are three additional implications of public use law’s privileged treatment of corporate inventors, two of which are practical and one is theoretical. After discussing these implications, the balance of this Article proposes a solution that responds to all three concerns.

First, the unequal treatment makes patent defense harder and more expensive, directly increasing barriers to entry into the innovation economy for a wide swath of the inventing class. Obtaining a patent is already an expensive ordeal.\(^13\) Additional costs from the likelihood of future (unsuccessful) litigation\(^14\) further discourages entrepreneurs. Litigation increases costs and decreases the net present value of a patent, and uncertainty in litigation outcome, evidenced by courts’ uneven and

\(^9\) *Id.*

\(^11\) *Id.*

\(^12\) *Id.* at *3.

\(^13\) David Fagundes & Jonathan S. Masur, *Costly Intellectual Property*, 65 VAND. L. REV. 677, 685, 690 (2012). The average patent will cost the applicant approximately $22,000 to successfully prosecute, *id.* at 690, although this number may be conservative, with some costs reaching $30,000, *id.* at 690 n.39. Notably, these estimates do not include the potentially devastating effect of a patent being declared invalid.

sometimes haphazard application of public use, increases costs significantly. That they are more likely to fail to protect their patents may also discourage entrepreneurs from entering the patent process, opting, in some cases, for trade secrecy or declining to innovate in the first place.

Second, the pattern of favoring corporate inventors entrenches an already unequal and strikingly homogenous patent landscape. According to the Patent and Trademark Office (PTO), nearly all of the top 100 patentees in 2014 were large corporations, which, although not itself evidence of inequality—large corporations with many employees likely have more inventions—feeds a larger narrative of entrenched privilege. For example, women remain a distinct minority among science and technology graduates employed in inventor roles at large corporations. If male-dominated corporations continue to control the patent world, the contributions of women and other minorities could still be minimized. A recent study of 4.6 million utility patents granted by the PTO between 1976 and 2013 found that “[w]omen contributed less than 8% of all inventorships for the entire period,” maxing out at 10.8% in 2013, an increase from 2.7% in 1976. Men dominate patenting in almost every country,

108. Nat’l Sci. Found., Women, Minorities, and Persons with Disabilities in Science and Engineering 6–7 (2015) (stating that women receive bachelor’s degrees in certain science fields at far lower rates than men, including computer sciences (18.2%), engineering (19.2%), physics (19.1%), and mathematics and statistics (43.1%).

109. U.S. Bureau of Labor Statistics, Women in the Labor Force: A Databook 35–36 (2014) (reporting that 39% of chemists and material scientists are women; 27.9% of environmental scientists and geoscientists are women; 15.6% of chemical engineers are women; 12.1% of civil engineers are women; 8.3% of electrical and electronics engineers are women; 17.2% of industrial engineers are women; and 7.2% of mechanical engineers are women).

with forty-two countries listing no female inventors whatsoever. Among academic life science patentees, women patent at about 40% the rate of men. And gender inequality in the patent world does not stop there: historically, women were not only discouraged from claiming credit for their inventions; their innovations were actively co-opted by husbands, fathers, brothers, and other men around them. As Dan Burk has suggested, the continued underrepresentation of women among patentees and patent examiners may suggest that the “system retains some residue” of more overt historical discrimination. Any part of that system that privileges corporate inventors to the exclusion of a more diverse innovator pool may contribute to that residual imbalance.

Underlying these practical problems is a broader doctrinal failure. At its heart, the public use bar is about disclosure, a transfer of information from one person to another. As such, it is a distinctly social phenomenon that is fact specific and highly contextual. And yet the principles of privacy-as-control, which, as discussed above, locate analysis within the disclosing party rather than in the social context of disclosure, dominate the doctrine. Judges tend to focus on the inventor’s volitional acts and secondarily, if at all, consider the context in which those acts occurred. Only rarely are social norms respected like they are in Bernhardt, and when they are, corporate inventors are usually the beneficiaries.

In cases like Bernhardt, Dey, and American Seating, the Federal Circuit acknowledged that the relationship between the inventor and those to whom she discloses her invention should matter because certain relationships could give rise to an expectation of confidentiality. In Bernhardt, the court accepted that participants in the pre-market furniture show could have a custom of confidentiality based on their status as industry partners. In Dey, the court recognized that patients in clinical trials typically do not sign confidentiality agreements, so, given that custom, none should be required in this case. And in American Seating, the Federal Circuit affirmed that even without confidentiality agreements, the disclosure to a business partner who

116. Waldman, supra note 5, at 593 (“[P]rivacy is a social phenomenon not merely because other people exist, but because privacy is about the social circumstances in which information flows from one party to another.”).
117. See supra notes 29–48 and accompanying text.
helped build the invention and the internal demonstration to the inventor’s employees were both done in contexts of implied confidentiality.120

But those relationships are ignored in Cluster B (solo entrepreneur) cases. If anything, the relationships between the parties in Beachcombers (friends and colleagues), Lough (friends and colleagues), and MIT (friends) were closer than the relationships in Bernhardt (participants in the same business), Dey (clinical trial designers and subjects), and American Seating (business partners and employees), and yet all three of the former lost their public use cases. Elsewhere, district courts, the Federal Circuit, and the Supreme Court have gone out of their way to disclaim any relevance of the relationship between the parties for determining confidentiality or control.121 However, disclosures of all kinds happen in context—one that, I argue, is characterized by trust.

II. TRUST AND SOCIAL NETWORK CONFIDENTIALITY

To address these doctrinal and practical deficiencies, this Article proposes a re-orientation of public use law around three principles: that it should (1) apply equally and evenly to corporate and entrepreneurial inventors alike; (2) retain fidelity to the goals of patent law, in general, and the public use bar, in particular; and (3) reflect the social context of disclosure.122 Though hardly controversial, these elements have been missing from the doctrine and its application: the law adheres to the individual-focused conception of privacy-as-control, privileges corporate inventors over solo entrepreneurs, and perversely discourages patenting among some innovators.

The public use bar is a limitation on disclosure. Social scientists have shown that there are several factors at play in the disclosure of information to small groups: norms of trust, the structure of the network in which the information is disclosed, the nature of the information itself, and the relationship between the disclosing party and the members of her network.123 Together, these factors help explain why individuals disclose private information to others and determine the circumstances in which information disclosed to a small group will escape to a larger one. We can apply these factors to achieve our goal of fair public use jurisprudence. I argue that different networks can develop powerful norms of confidentiality and discretion—commonly

120 Am. Seating Co. v. USSC Grp., Inc., 514 F.3d 1262, 1268 (Fed. Cir. 2008).

121 See, e.g., Mass. Inst. of Tech. v. Harman Int’l Indus., 584 F. Supp. 2d 297, 313 (D. Mass. 2008) (“The Supreme Court has held, however, that even the use of an invention by the inventor’s wife or romantic interest could be an invalidating public use. Therefore, the identity of the drivers does not, by itself, prevent the field trials from being a ‘public use.’” (citation omitted) (citing Egbert v. Lippmann, 104 U.S. 333, 335–38 (1881))).

122 For more discussion of the social context of disclosure, see, for example, Nissenbaum, supra note 28, at 120 (arguing that “contextual integrity is the appropriate benchmark of privacy”); Waldman, supra note 5.

123 The discussion that follows is based on extensive social science research from the author’s doctoral studies and reflects the contributions of legal scholars like Lior Strahilevitz, whose article, A Social Networks Theory of Privacy, bridged social network and privacy scholarship, Strahilevitz, supra note 43, and Duncan Watts’s groundbreaking work on so-called “small world networks,” Duncan J. Watts, Six Degrees: The Science of a Connected Age (2003).
understood as trust—on which individuals (and inventors) should be able to rely. When disclosures happen in these contexts of trust, they are not public and should be protected as such.

In this section, I summarize the basic principles of social network theory and what I have called privacy-as-trust; capture the lessons of that literature for disclosure and public use contexts; translate those lessons into a flexible, network-based, and administrable tool for public use cases; and show how elements of this proposal will not only advance the policy goals of patent law, but are also readily reflected across intellectual property regimes.

A. A Theory of Trust and Information Flow

Social network theory gets us part of the way to our goal. It helps explain how and why certain information may flow through a network and into another, wider network, and why other types of disclosure may not. But it does not explain why we share in the first place. This is the role of trust—specifically, what sociologists call “particular social trust.” Together, trust and social network theory provide a step-by-step model that assesses the reasonableness of disclosures and the likelihood of subsequent publicity. They are perfect tools for public use law reform.

1. Social Networks and Information Diffusion

Social network theory is the cross-disciplinary study of how the structure of networks affects behavior.124 A network is just a set of objects—people, cells, power plants—with connections among them—social encounters, synapses, grids. They are all around us: a family is a (social) network, as is the (neural) network in a brain and the (distribution) network of trash pick-up routes in New York City. To see one visualization of diffusion through a network,126 dab the nib of a marker into the middle of a piece of construction paper and you will see, in real time, the diffusion of ink from one origin point, or node, through the lattice-like network of fibers that make up the paper. Facebook is the paradigmatic modern social network: its overarching network has billions of nodes (members),127 but it also has billions of subnetworks, where nodes overlap, interact, and share information. It is a network’s ability to invite, disseminate, and retain information that concerns us.

As Lior Strahilevitz has shown, the theory of information flow within and among networks can begin the discussion of when information disclosed to a small group is still private.128 It helps establish two important conclusions: that both the structure of

124. Watts, supra note 123, at 28.
125. Id. at 27.
128. Strahilevitz, supra note 43, at 946–73. For Professor Strahilevitz, the conversation starts and ends with social network theory. But see Waldman, supra note 5, at 594–95, 625–28.
a network and the nature of information disclosed into it affect the flow of information through and beyond it.

Although networks are evolving ecosystems—people constantly drop in and out—human social networks tend to be close knit and highly “clustered,”129 with “strong ties” linking us to our friends.130 Family members are good examples of individuals with strong ties: everyone knows everyone else and each member engages in repeated social interactions with each other. They spend a lot of time together, have deep emotional connections, and reciprocate the connection with each other.131 Members of other tightly clustered networks—support groups, recreational sports teams, individuals with the same political beliefs—share with each other. Social network theory does not tell us precisely why these persons feel comfortable sharing personal information with each other, but it does explain one form of information diffusion: the stronger the tie between two individuals, the more likely their friends overlap, and the more likely information will stay within those close-knit overlapping networks. For example, Michelle tells her best friend Nicole about her idea for a new mobile app, hoping Nicole will give her some advice. Nicole may tell Opher, her husband and Michelle’s childhood friend. In this network, Michelle’s mobile app idea is unlikely to spread. If networks only had strong ties, we would see many groups of friends that recycle information among themselves.132

Information is spread between different clusters through what Mark Granovetter has called “weak ties.”133 Some weak ties are “supernodes,” or society’s socialites, who have friends in different groups and make connections among them. One example might be an in-law. My sister is part of my close-knit family network; her husband is part of his. If he is indeed close to his family and a social person, he could perform the function of a network bridge, making connections between our two very different families.

More often than not, though, people are linked by the acquaintances they share—two strangers on a train marveling that they have the same mutual friend.134 These weak-tie bridges, Professor Granovetter has shown, are the driving force behind

129. Watts, supra note 123, at 28.
130. Id. at 40; Strahilevitz, supra note 43, at 951 (citing Ronald S. Burt, Bridge Decay, 24 SOC. NETWORKS 333, 333–34 (2002); Karen Klein Ikkink & Theo van Tilburg, Broken Ties: Reciprocity and Other Factors Affecting the Termination of Older Adults’ Relationships, 21 SOC. NETWORKS 131, 142–45 (1999)).
132. Id.
133. Id. at 1366 (“If one tells a rumor to all his close friends, and they do likewise, many will hear the rumor a second and third time, since those linked by strong ties tend to share friends. . . . [B]ridges will not be crossed.”).
134. Id. (“W[h]atever is to be diffused can reach a larger number of people, and traverse greater social distance (i.e., path length), when passed through weak ties rather than strong.” (footnote omitted)).
136. Watts, supra note 123, at 38, 41. Duncan Watts’s project, the “small world problem,” is so named after the reaction when two strangers realize they have a friend in common. They say, “what a small world[!]” Id. at 38.
information dissemination from one close-knit group to another. These weak ties are acquaintances we don’t know well, but with whom interactions are essential if we want to bring outside information into a close-knit group full of strong ties. Consider another example: Jennifer is a doctor, a soccer mom, and a hiker; she is friends with her work colleagues, casually acquainted with her child’s teammates’ moms and dads, and close with her hiking buddies, with whom she goes on an annual trip to Machu Picchu. An occasionally random conversation at work or at a soccer game about hiking may introduce a love for the outdoors to a soccer dad who has lived all his life in Manhattan. Professor Granovetter has shown that these types of weak ties are essential to, among other things, getting jobs: weak ties bring in contacts and information you would not otherwise have received. When there are no weak ties between individuals otherwise connected by only a few steps, or when those ties are inactive, those even nearby nodes are highly unlikely to ever encounter each other or the information they disseminate. They have what Ronald Burt has called a “structural hole” between them. As the active bridges between close-knit groups, then, weak ties are essential for information diffusion.

But the structure of the network—clustering, distance between clusters, and types of connections, as well as any exogenous limitations to the network—is not the only important element. The nature of the information also matters. Weak ties are not adept at transmitting all types of information. Job openings or rumors are easy to pass along: they are simple pieces of information that do not degrade along the line and are, therefore, amenable to transmission during short chance encounters with acquaintances. But studies have shown that they are ill equipped to transfer complex information or aggregate pieces of information into a richer picture. In other words, weak ties cannot put two and two together to make four; conversations with acquaintances rarely involve in-depth analysis. Put another way, anyone who has ever played the game Telephone as a child remembers that simple statements make it through, but complex ones get mangled.

Professor Strahilevitz illustrated these points using the popular parlor game, “Six Degrees of Kevin Bacon.” Duncan Watts used stories from his own life. Facebook is another helpful, accessible model. Facebook is an evolving ecosystem,

137. Granovetter, supra note 131, at 1366.
138. WATTS, supra note 123, at 49 (citing Granovetter, supra note 131).
139. Granovetter, supra note 131, at 1371–73.
140. Weak ties are, therefore, essential to overcoming the problem Cass Sunstein described in Republic.com 2.0, where he argued that online social networks contribute to greater political polarization in society because network algorithms reinforce individuals’ choices to seek out information with which they already agree. CASS R. SUNSTEIN, REPUBLIC.COM 2.0 46–73 (2007).
144. Id. at 949–52.
145. WATTS, supra note 123, passim.
where new people are always joining and dropping out, changing our own social networks. The average adult Facebook user has 338 friends but “follows” far fewer, with fewer still showing up on her news feeds. This subnetwork of friends tends to be close knit, constituted by many overlapping strong ties. But Facebook’s algorithm, while privileging close friends, allows posts from acquaintances in our networks to appear on our feeds, as well. These weak ties bring in additional information from outside our closest-knit groups. The type of information also matters: studies show that status updates, shared links, and photos reach more members of your network than friendships and wall posts.

2. Trust and Sharing

But social network theory does not explain why we share information with others—strong or weak ties, intimate friends or strangers—in the first place. As an information flow model, it skips the first step: social network models help explain how the ink spreads through the construction paper, not why we placed the marker nib on the paper. But this is essential for developing an administrable model for adjudicating public use cases: the initial disclosure to others has to be reasonable, not reckless, and one that society, and by extension, the law is willing to protect.

This is the role of trust.

What sociologists call particular social trust is a resource of social capital between or among two or more persons concerning the expectations that other members of their community will behave according to accepted norms. It is the “favorable expectation regarding other people’s actions and intentions,” or the belief that others

149. This is also true of personal disclosures in the privacy context. Individuals retain privacy rights where they have a legitimate expectation of privacy that society is willing to recognize as reasonable. Katz v. United States, 389 U.S. 347, 361 (1967) (Harlan, J., concurring).

152. Guido Möllering, The Nature of Trust: From Georg Simmel to a Theory of Expectation, Interpretation and Suspension, 35 SOC. 403, 404 (2001); see also J. David Lewis & Andrew Weigert, Trust as a Social Reality, 62 SOC. FORCES 967, 968 (1985); Ken Newton
will behave in a predictable manner. As such, it deals in expectations and perceptions. For example, if I ask a friend to hold my spare set of keys, I trust she will not break in and steal from me. When an individual speaks with relative strangers in a support group like Alcoholics Anonymous, she trusts that they will not divulge her secrets. I cannot know for certain that my neighbor will not abuse her key privileges or that my fellow support group members will keep my confidences, so trust allows me to interact with and rely on them. If I never trusted, my social life would be paralyzed. As Niklas Luhmann stated, trust exists where knowledge ends. It is the mutual “faithfulness” on which all social interaction depends. And I earn all sorts of positive rewards as a result.

Trust is at the core of individuals’ decisions to share personal information with others. From support groups to social friends and even websites, trust is the linchpin that gives individuals the comfort and confidence to share. Trust can arise from explicit or implicit social cues: One may preface a conversation by stating, “This is to be kept between us.” Or, two people sharing a secret at a party might physically turn their bodies away from the crowd, huddle down, and whisper. Trust can also be based on experience—expectations developed over a history of sharing—and confidentiality. Trust and a willingness to disclose may also emanate from alcoholics and those suffering from depression to close friends, the confidence they need to disclose personal and perhaps stigmatizing information. I cannot know for certain that my neighbor will not abuse her key privileges or steal from me. When an individual speaks with relative strangers in a support group like Alcoholics Anonymous, she trusts that they will not divulge her secrets. I cannot know for certain that my neighbor will not abuse her key privileges or that my fellow support group members will keep my confidences, so trust allows me to interact with and rely on them. If I never trusted, my social life would be paralyzed. As Niklas Luhmann stated, trust exists where knowledge ends. It is the mutual “faithfulness” on which all social interaction depends. And I earn all sorts of positive rewards as a result.

Trusting relationships are based entirely upon what is known with certainty about another person, and very few relationships would endure if trust were not as strong as, or stronger than, rational proof or personal observation.

Trust helps us deal with uncertainty and complexity by allowing us to rely on the recommendations of others. See Talcott Parsons, Action Theory and the Human Condition 45–47 (1978). Plus, it encourages therapeutic sharing by giving all individuals, from alcoholics and those suffering from depression to close friends, the confidence they need to disclose personal and perhaps stigmatizing information. See, e.g., Aaron T. Beck & Brad A. Alford, Depression: Causes and Treatment 292–324 (2d. ed. 2009). For a more in-depth discussion of the social benefits of particular social trust, see Waldman, supra note 5, at 601–05.

See Waldman, supra note 16 (providing empirical evidence based on a study of Facebook users that trust is essential in individuals’ decision to share personal information online).

These implicit cues of confidentiality are discussed at length in Erving Goffman, The Presentation of Self in Everyday Life 112–32 (1959) (discussing the “backstage” of social interaction). See also Erving Goffman, Strategic Interaction (1969).

See, e.g., Peter M. Blau, Exchange and Power in Social Life 98–99 (1964); John
directly from social network norms and the identities of the network’s members. Gene Shelley’s study of sharing one’s HIV status with others is a good illustration. HIV status is, for many, private but not secret: many of the same people that choose to hide their status from acquaintances, friends, and even family for fear of ostracism, stigmatization, homophobia, or worse,161 are willing to share it with relative strangers who are also living with HIV.162 Several participants in Shelley’s ethnographic study explained why. For example, one stated: “I would tell my support group. Everyone there is HIV-positive and I’m comfortable there.”163 Another stated: “The only two people, aside from members of my support group and doctors, who know are my former lover (who gave her the HIV) and my son’s father.”164

Neither the structure of the participants’ networks nor the nature of the information explains why individuals share private information in the first place. It cannot be the mere fact that a support group is close knit; so is a family, and many respondents adamantly refuse to disclose their status to family members. Individuals on Facebook share information with different subnetworks of friends, as well, many of which look like the close-knit networks discussed above.165 The explanation for why we share, therefore, has to account for differences among networks. A better explanation is a form of network-specific trust: with respect to preventing the further spread of a person’s HIV status, individuals living with HIV can better predict the future behavior of others also living with HIV (even if they know very little else about them) than others with whom they may be close for different reasons. This unstated implication of Shelley’s research suggests that powerful norms of confidentiality and behavior that limit information flow can develop within different social

162. Shelley et al., supra note 160, at 204.

163. Id.

164. Id. (parenthetical in original).

165. James Grimmelmann has noted that online social networks allow social interaction to occur in public, for everyone to see, which fosters norms of reciprocity that encourage individuals to share. See James Grimmelmann, Saving Facebook, 94 IOWA L. REV. 1137, 1156 (2009) (Social network “sites also piggyback on the deeply wired human impulse to reciprocate. People reciprocate because it helps them solve collective-action problems, because participation in a gift culture demands that gifts be returned or passed along, because it’s disrespectful to spurn social advances, because there’s a natural psychological instinct to mirror what one’s conversational partner is doing, and because we learn how to conduct ourselves by imitating others. Facebook’s design encourages reciprocal behavior by making the gesture-and-return cycle visible and salient.”).
networks depending on structure, the nature of the information, and indicia of trust among members.

3. Takeaways

If we combine the lessons of privacy-as-trust with social network theory, one overarching conclusion emerges: information disclosed in networks characterized by trust is not truly public because that information was shared with the legitimate expectation that information recipients would be discrete. Relying upon expectations of network members’ continued adherence to accepted social norms, individuals share sensitive information with their network. If it is a network of almost exclusively strong ties, as many informal social networks are, the information is likely to be kept confidential. The presence of weak ties increases the likelihood of information diffusion outside the network. And what constitutes a strong or a weak tie may vary with the information at issue, as will the ease of diffusion: complicated information generally does not travel through weak ties, but what is simple to one audience may be complex to another. The greater the audience’s applicable skill level relative to the information, the more likely it falls on the simpler end of the information spectrum.

We can apply these lessons to developing a model for analyzing public use cases. First, the test for public use must be a totality of the circumstances test, as correctly stated in *Bernhardt*. This kind of flexible standard is the only way to assess a social context on a case-by-case basis. Second, the test should focus on (1) the information disclosed, (2) the network into which inventions are disclosed, looking for weak ties likely to spread the information and strong ties that do not, and assessing relative complexity of the information, and (3) the relationship between the parties, looking for indicia of trust. Third, some of the questions fact finders should ask include, but may not be limited to, the following: Did the relationship between the inventor and her audience show any evidence of implied confidentiality and trust? Was the demonstration or use of the invention done in such a way so as to reveal to the audience how it worked? Was the invention complex, especially relative to the skill level of the audience? Did the audience contain anyone not bound by trust? And, did the audience contain “supernodes” that could bridge networks?

These questions can help fact finders establish the expectations of all parties involved in an alleged public use. Notably, these questions do not prevent a court from considering other factors, including the presence of confidentiality agreements and evidence of commercial motive for the use. The new standard merely ensures that neither formal agreements nor commercial intent is elevated to determinative status and that the locus of analysis shifts from the individual to the social context of disclosure.

B. Advantages to the Approach: Social Networks and Intellectual Property

Applying privacy-as-trust to public use questions fills the gap left by the current privacy-as-control approach: it is egalitarian, flexible, practical, and retains fidelity to the policy objectives of patent law. Nor is it a radical proposal: the respect for social network theory embedded in privacy-as-trust already cuts across all
intellectual property regimes. This Article’s flexible, network-oriented approach to public use will, therefore, fit neatly within our intellectual property legal traditions.

Privacy-as-trust will end the current system’s uneven and unfair application. As discussed above, the current application of public use law privileges corporate inventors over solo entrepreneurs in two ways: respecting industry norms of confidentiality while ignoring the more informal social norms of friends, and elevating the importance of formal confidentiality agreements to near determinative status. The first tendency directly benefits the already entrenched interests of corporate patentees; the second tendency indirectly enhances their position because only wealthy inventors have the leverage to insist on nondisclosure agreements and the money to pay lawyers to write them. These discriminatory applications are an outgrowth of employing a privacy-as-control standard: it lends itself to bright-line rules regarding disclosure and ignores the social context in which an inventor decides to demonstrate her invention.

Privacy-as-trust gives judges the tools to reverse these tendencies. It does not discriminate between social networks; indeed, the proposal is built around the notion that different social networks can create equally powerful norms of confidentiality and low likelihoods of information diffusion beyond the network. And by shifting the public use analysis from the inventor’s actions to the social context of disclosure, it ensures that myriad factors beyond signed confidentiality agreements will be in play. In turn, inventors and entrepreneurs traditionally underrepresented in the corporate world will be given a fair shot.

It also remains true to the goals of patent law, in general, and the public use bar, in particular. As expressed by the Federal Circuit outlined in Tone Bros. v. Sysco Corp., those goals are

(1) discouraging the removal, from the public domain, of inventions that the public reasonably has come to believe are freely available; (2) favoring the prompt and widespread disclosure of inventions; (3) allowing the inventor a reasonable amount of time following sales activity to determine the potential economic value of a patent; and (4) prohibiting the inventor from commercially exploiting the invention for a period greater than the statutorily prescribed time.

Inventions disclosed to close friends or colleagues whom we trust cannot truly be said to be “freely available” in any sense. It is no different than trusting thousands of employees or several corporate partners not to talk about a new device. Prompt disclosure and patenting is still incentivized by the America Invents Act’s switch from a first-to-invent rule, which could delay application as long the inventor had evidence of when she first created her device, to a first-to-file rule. And there is less likely to be evidence of commercial exploitation or sales activity in situations of disclosures
to social friends and other trusted social networks. Indeed, looking to relationships of trust may advance the goals of the patent system: it would encourage more experimentation among corporate inventors and lone entrepreneurs alike. As the Supreme Court said in 1877, it does not frustrate the public interest when delays in patenting are “occasioned by a bona fide effort to bring [the] invention to perfection, or to ascertain whether it will answer the purpose intended.”172 The patent monopoly is, after all, only temporary, “and it is the interest of the public, as well as [the inventor’s], that the invention should be perfect and properly tested, before a patent is granted for it.”173 A respect for relationships of trust among inventors and their friends and colleagues would not only help realize this goal, but it would also challenge the results in cases like \textit{Beachcombers}, \textit{Lough}, and \textit{MIT}.

Beyond these policy benefits, the network-oriented approach of privacy-as-trust occupies an underappreciated yet salient position across intellectual property law, making it even more reasonable to apply it to public use cases. Social network theory permeates all branches of intellectual property. In particular, the requirements for obtaining copyright, patent, trademark, and trade secret protection all incorporate the principles of social network theory.

Copyright’s originality threshold,174 for example, which requires a bare modicum of creativity to obtain a copyright,175 is defined relative to the industry norms in which the creator belongs. In \textit{Feist Publications, Inc. v. Rural Telephone Services Co.},176 for example, the seminal Supreme Court case on copyright originality, a run-of-the-mill phonebook was not copyrightable because it was designed, arranged, and presented in an ordinary manner. But “ordinary” was defined relative to the closed network of other phone books. Rural’s local phone book was “typical,”177 unlike Feist’s, which covered a wider area and included additional data.178 In the end, the reason why Rural’s local phonebook was not copyrightable was because it was just like every other phonebook: “Rural’s white pages are entirely typical The end product is a garden-variety white pages directory, devoid of even the slightest trace of creativity.”179 Typicality is, by definition, entirely contextual and based on the customs and norms of a particular field, that is, something is typical compared to something else. It is typical for phone books to be alphabetical. It is not typical for, say, epic poems to be alphabetical listings of words.180

172 Elizabeth v. Pavement Co., 97 U.S. 126, 137 (1877) (italics omitted).
173 Id.
174 17 U.S.C. § 102 (2012) (“Copyright protection subsists, in accordance with this title, in original works of authorship fixed in any tangible medium of expression”).
175 Feist Publ’ns, Inc. v. Rural Tel. Servs. Co., 499 U.S. 340, 358 (1991) (“Originality requires only that the author make the selection or arrangement independently (\textit{i.e.}, without copying that selection or arrangement from another work), and that it display some minimal level of creativity.” (italics in original)).
176 Id. at 340.
177 Id. at 342 (“Rural publishes a typical telephone directory”).
178 Id. at 342–43 (“Unlike a typical directory, which covers only a particular calling area, Feist’s area-wide directories cover a much larger geographical range”).
179 Id. at 362 (emphasis added).
180 This precise example was the topic of a discussion, started by my colleague Jake Sherkow and based on a question from a student in his Intellectual Property class, on the
Like copyright’s originality threshold, patent law’s substantive requirements of patentability take a network-oriented approach. Inventions that are obvious to a “person having ordinary skill in the art,” or PHOSITA, are unpatentable. Patent applications that cannot teach the PHOSITA how to make or use the invention are also invalid.

Differences among social networks are also embedded in trademark law. The Lanham Act protects marks relative to particular goods in commerce: Bass Brewery’s trademark on the word “Bass,” for example, protects its use of “Bass” for beer. It does not give the company ownership over the word “bass” in all contexts. Among the several factors courts use to assess consumer confusion and, thus, trademark infringement under the Lanham Act, three take a network-specific approach: the more related the products and the more overlap in marketing channels, the greater the likelihood of a confusion finding, presuming that products that target different networks are less likely to be confused with each other. Courts also assess the degree of care likely to be exercised by purchasers, implicitly recognizing that different consumers behave differently. Consumer confusion, therefore, is an information flow problem, but one that reflects how information diffuses from one network to another.

Trade secret law goes even further than recognizing that social networks exist. In fact, without ever using the language of social network theory and trust, trade secrecy employs the network-oriented, trust-based model described above in three ways. First, a trade secret is defined relative to a given network. Although the rule is that information “generally known or readily ascertainable” to the public cannot constitute a trade secret, the “public,” in this case, refers to a given industry. The rule

IPProf’s Listserv on September 29, 2014.

182. 35 U.S.C. § 103 (2012). This is the requirement of nonobviousness.
183. 35 U.S.C. § 112(a) (2012). This is the enablement requirement.
184. In the text of the Lanham Act, the phrase “in connection with the applicant’s goods in commerce,” or variation thereof, is used as a dependent clause modifying the scope of the mark forty-nine times. Lanham Act, Pub. L. 79-489, 60 Stat. 427 (1946).
185. There are eight such factors: “similarity of the conflicting designations; relatedness or proximity of the two companies’ products or services; strength of [the senior] mark; marketing channels used; degree of care likely to be exercised by purchasers in selecting goods; [alleged infringer’s] intent in selecting its mark; evidence of actual confusion; and likelihood of expansion in product lines.” Brookfield Comm’n’s, Inc. v. W. Coast Entm’t Corp., 174 F.3d 1036, 1053–54 (9th Cir. 1999); see also, e.g., AMF Inc. v. Sleekcraft Boats, 599 F.2d 341, 348–49 (9th Cir. 1979). But, as the Ninth Circuit stated in Brookfield, some factors, particularly the first three, are “more important than others.” Brookfield, 174 F.3d at 1054.
186. Jonathan Zittrain has argued that the “problem” of privacy is the same as the “problem” of intellectual property: dissemination of information and the loss of personal control. Zittrain, supra note 40. I argue that Professor Zittrain is correct, to a point: the problem is not just information dissemination, but dissemination to a different network.
makes sense as a matter of economics and competition, but it also reflects the social science of information diffusion. An oil company executive might come across the proprietary recipe of a donut company, but unless there are weak ties ready to disseminate the recipe beyond the oil industry and, somehow, to the confections business, the information is unlikely to get to those who could use it.

A second lesson of social network theory—that weak ties between networks are ill equipped to disseminate complex or aggregated information—is also reflected in the law of trade secrets. As the Fifth Circuit stated in *Metallurgical Industries, Inc. v. Fourtek, Inc.*, a seminal and oft-cited trade secrets case, the aggregation of pieces of information, “each of which, by itself, is in the public domain,” can be a trade secret because knowledge and aggregation of those bits of data could provide a competitive advantage. Again, the economic rationale makes sense. But implicit in this aggregation rule is the assumption that industry competitors are not adept at piecing together bits of distant data points or, to use the language of social network theory, that complex and aggregated information does not diffuse through networks easily and is unlikely to be gathered up, analyzed, and put to use through weak ties. Otherwise, the aggregate information could not be considered a secret in any sense.

Third, when it comes to the prior disclosure of confidential business information, a problem similar to prepatenting use, trade secret law takes a network- and relationship-oriented approach, unconsciously implementing some of the lessons of social network theory and trust. As Sharon Sandeen showed in her cross-disciplinary study of privacy and trade secrecy, trade secret law embraces the doctrine of “relative secrecy.” This is the notion that legal protection for trade secrets can be retained even when others know the secret. The test for determining when such protection exists “is contextual and depends on a number of factors, not the least of which is the relationship . . . between the trade secret owner and the person(s) to whom the information is disclosed.” Trade secrecy, then, shifts the analysis to the context of disclosure, finding duties of confidentiality implied by the norms of those contexts.

188. The recipe for Krispy Kreme donuts is a famous trade secret.
189. For a discussion of Mark Granovetter’s theory on the “strength of weak ties” and the role they play in information diffusion, see supra notes 128–48 and accompanying text.
190. See supra text accompanying note 143.
191. 790 F.2d 1195 (5th Cir. 1986).
192. *Id.* at 1202 (quoting *Water Servs., Inc. v. Tesco Chems., Inc.*, 410 F.2d 163, 173 (5th Cir. 1969)); see also, e.g., *Penalty Kick Mgmt. Ltd. v. Coca Cola Co.*, 318 F.3d 1284, 1291 (11th Cir. 2003); *Catalyst & Chem. Servs., Inc. v. Glob. Ground Support*, 350 F. Supp. 2d 1, 9 (D.D.C. 2004) (‘‘Defendants have submitted exhibits showing that each parameter individually was within industry knowledge before defendants’ alleged disclosure. Plaintiffs, however, do not allege only that each parameter individually is a trade secret; rather, they also argue that all four elements taken together in precise combination constitute a legally protected interest under the Trade Secrets Act. The record does not show that all four parameters were disclosed together, in a specific combination, to the industry.’’ (citations omitted)).
194. *Id.* at 696. This is also the topic of Professor Strahilevitz’s article, *A Social Networks Theory of Privacy*. Strahilevitz, supra note 43.
Professor Sandeen gathered and analyzed the case law and found that a diverse array of relationships has given rise to implied confidentiality: employer and employee, purchaser and supplier, licensor and licensee, and between partners in joint ventures, among others. 196 Trade secret cases also appreciate the role of norms created by these relationships rather than just the formalities themselves. As one court stated: “To give publicity, wantonly, to confidential correspondence, meets with the prompt re-buke and merited condemnation of every one not lost to all honorable feeling. It is a death-blow to the best interests of civilized society itself . . .” 197 Lofty rhetoric aside, trade secret law appreciates norms of trust and confidentiality implied by certain social contexts.

What is missing from trade secrecy’s approach to the problem of limited disclosures, and why public use law cannot simply learn the lessons of “relative secrecy” and move on, is a model for solving the public use’s discrimination problem. Relative secrecy cases often involve corporate parties and, as Professor Sandeen has shown, the relationships that courts have so far recognized as giving rise to implied duties of confidentiality are business relationships. That confidentiality agreements are not required, in doctrine and in practice, is a step forward. But trade secrecy does not get us any further toward respecting the powerful confidentiality norms of networks of friends, solo entrepreneurs, part-time inventors, and hobbyists. A social network-based doctrine of trust does just that.

III. REORIENTING PUBLIC USE LAW

Armed with the lessons of social networks and privacy-as-trust, we can return to the public use cases discussed above and summarized in Table I. Recall that sometimes, not having a confidentiality agreement in place has little-to-no effect on a public use analysis: those cases tend to involve Cluster A (corporate) inventors, who, based on the twenty-five cases discussed above, usually win their public use cases. Other times, confidentiality agreements are essential, leading many Cluster B (solo entrepreneur) inventors to lose their public use cases. 198 Even where Cluster A inventors lose, courts’ tendencies to elevate formal secrecy agreements to near determinative status is a boon: only inventors with the power and money of a large corporation have the leverage to put nondisclosure commitments in writing and force their business partners to sign them. 199 And where confidentiality agreements are missing, courts tend to be willing to fill the gap with the customs and norms of industry, but rarely do so with the more informal, yet no less powerful norms of solo inventors, hobbyists, and part-time innovators. 200 In short, the application of the public use bar is either haphazard, at best, or discriminatory, at worst, with no clear tools in the current doctrine to resolve the problem. The dominant theory of adjudication—what privacy scholars would call privacy-as-control—lends itself to the harsh, bright line, and uneven application of the law. This raises the question of how to reform public use law to create more certainty, fairness, and justice.

198. See supra notes 57–76 and accompanying text.
199. See supra notes 77–85 and accompanying text.
200. See supra notes 87–102 and accompanying text.
Social network theory and privacy-as-trust offer a model for adjudicating public use cases. Using a totality of the circumstances test that focuses on the audience for a disclosure, the information’s complexity relative to that audience, and the relationship between the inventor and the audience, the standard will comport with what we know about how and why individuals share information with others. In this Part, I revisit some of the leading public use cases discussed above and show how some would turn out the same, others would end differently, and the fate of others requires more information. Luckily, a network- and trust-oriented approach also lays out clear pathways for the admission of evidence, allowing appellate judges to remand cases with specific instructions for fact finding. I then respond to possible objections to applying privacy-as-trust to public use.

A. Looking at the Cases Anew

A case like Xerox Corp. v. 3Com Corp.,201 a Cluster A case, would come to the same result. The analysis would vary only slightly. In Xerox, a company employee invented a method that improved computer handwriting recognition.202 Concluding that the inventor’s submission of a videotape of himself demonstrating the invention to conference organizers as part of an application to present did not invalidate his patent, the court explained that the videotape was not a public use: no one, other than the inventor, had actually used anything.203 That can hardly be the rule in public use cases; cases like Baxter and Eolas Technologies v. Microsoft Corp. both found invalidating public uses after mere demonstration by the inventor.204 But the court did rely on the norms, customs, and practices of the context of the disclosure. Although the inventor in Xerox did not include a secrecy agreement along with his submission, the court recognized that conference organizers keep submissions confidential as a matter of “professional courtesy and practice” and that they were under “a professional ethical obligation” to maintain secrecy.205

This holding makes sense under a social network and trust model, as well. Given the relationship between the inventor and his audience, norms of trust can be implied: academic conference organizers generally do not reveal the details of submissions made to them. And even if the submission was sent to the two organizers who shared it with a selection committee, that audience was a close-knit closed network of strong ties. As such, the information was unlikely to jump from one small network to another wider network.

Under a social network and trust framework, Moleculon Research Corp. v. CBS, Inc.206 would come to the same result, but for very different reasons. Indeed, the analysis of this case highlights the chasm between the current doctrine and

202. Id. at 493.
203. Id. at 495–96.
204. See Eolas Techs. Inc. v. Microsoft Corp., 399 F.3d 1325, 1334 (Fed. Cir. 2005) (involving demonstration to Sun Microsystems employees); Baxter Int’l, Inc. v. Cobe Labs., Inc., 88 F.3d 1054, 1056, 1058 (Fed. Cir. 1996) (involving inventor who showed others how the centrifuge worked).
205. Xerox, 26 F. Supp. 2d at 496.
206. 793 F.2d 1261 (Fed. Cir. 1986).
application and shows how a social network approach honors the letter and spirit of the law.

Moleculon seems to stand for the proposition that, as with trade secrets’ doctrine of “relative secrecy,” the relationship between the inventor and her audience matters for public use. A close look at the Federal Circuit’s reasoning shows that, in fact, the likelihood of confidentiality of close-knit networks was ignored. In Moleculon, an organic chemistry graduate student and puzzle enthusiast invented what we would now recognize as a device similar to a Rubik’s Cube. He developed various paper models of the device and showed them to close friends, two roommates, and a colleague in the chemistry department. Once employed at Moleculon, the inventor left a wooden version on his desk, where his employer saw it and took an interest in it. After the inventor demonstrated how it worked, they jointly decided that Moleculon would try to market the device, at which point they sent a prototype to Parker Brothers and many other toy manufacturers. No one signed confidentiality agreements. Nor, as far as we know, was there any overt discussion of secrecy. The maker of the Rubik’s Cube, which Moleculon alleged infringed the patent on its device, challenged the patent’s validity for public use: the inventor’s decision to show the device to his friends, roommates, colleagues, and boss, they argued, more than met public use’s publicity requirement.

The Federal Circuit disagreed, but in so doing, although it professed to focus on the relationships between the parties involved in the disclosures, it really did no such thing. Rather, the court’s analysis looked at the volitional acts of the inventor, in line with the strict limits of privacy-as-control. The court suggested that “the personal relationships and other surrounding circumstances” gave rise to a “legitimate expectation of privacy and of confidentiality” at all times. But, upon closer examination of the decision, it appears that the relationships did not matter. What mattered was that the inventor never physically gave his invention to anyone else and never evinced a commercial motive for his demonstrations. That he at all times retained physical possession was what distinguished this case from Egbert v. Lippmann, the 1881 Supreme Court case where the Court said that an inventor made a public use of a corset when he gave it to his girlfriend to wear under her clothes. It could not have been the relationships between inventor and audience that distinguished Egbert; if anything, the implied confidentiality among lovers is stronger than between roommates and colleagues. The only thing that distinguishes Egbert is that, in Egbert, the inventor physically handed over the corset; in Moleculon, he kept it in his hands during the demonstration. The Federal Circuit also relied on the inventor’s lack of commercial intent in demonstrating his puzzle, reinforcing its focus on whether the inventor gave up control of the device.

Looking at Moleculon through the lens of privacy-as-trust would retain the result (a finding of nonpublic use), but employ an analysis far more open and transparent. Close friends and roommates, to whom the puzzle inventor demonstrated his device,

207. See supra text accompanying notes 193–97.
208. Moleculon, 793 F.2d at 1263.
209. Id.
210. Id. at 1265.
211. 104 U.S. 333 (1881).
212. Moleculon, 793 F.2d at 1266–67.
represent the kind of close-knit strong ties that recycle information within a network. They also have long histories of experience with each other, contributing to implied norms of confidentiality upon which individuals should be able to rely. Indeed, evidence was admitted at trial that “[a]ll who may have seen the model were intimate friends of [the inventor] and he would have been ‘astonished if any of them had felt free to do something with . . . the idea’” 213 What’s more, these friends, roommates, and colleagues, some of whom were fellow chemists, were not engineers or puzzle experts: merely showing them a series of cubes with rotating blocks would not have allowed them to reverse engineer the device. Therefore, given the audience’s relationship to the subject matter of the invention, the information disclosed was complex and of the type unlikely to be easily transmitted outside the network via weak ties. Social network and trust theory suggest that the inventor’s demonstrations were not public.

And JumpSport, Inc. v. Jumpking, Inc. would, like the court found, result in a finding of public use under privacy-as-trust. The invention—protective netting around a trampoline214—is simple to understand and easy to transmit by the weak ties (neighbors) that used it in the inventor’s backyard. Although norms of trust can indeed develop among acquaintances, additional evidence would likely show little basis for trust. This suggests that the invention could be disseminated to other networks beyond just the inventor’s neighbors.

The real power of privacy-as-trust, though, is evident from the cases where results and reasoning would change, best illustrated by a Cluster B case, Beachcombers International, Inc. v. WildeWood Creative Products, Inc.215 and a Cluster A case, Honeywell International Inc. v. Universal Avionics Systems Corp.216 In Beachcombers, the Federal Circuit found that demonstration of a new kaleidoscope at the designer’s home constituted invalidating public use.217 The court was not clear about its reasoning; the lack of any analysis may suggest that the court was simply relying on the lack of any confidentiality agreement.218 At a minimum, it is clear that the court ignored the social context of disclosure. The invite-only party was at the designer’s private home and gathered twenty to thirty of her friends for the express purpose of soliciting feedback.219 Despite the lack of any formal secrecy agreement, social network and trust theory would conclude that what happened at the cocktail party was not public use. The audience members were her friends, many of whom likely fall into the strong-tie category and engender norms of confidentiality; additional evidence could be admitted to describe the audience in more detail. In any event, that those in attendance were the designer’s social friends suggests that the technology of the kaleidoscope was relatively complex to them, making it the type of information that does not travel well through weak ties. Therefore, even if the invitees included some acquaintances or weak ties, the details of the invention would

215. 31 F.3d 1154 (Fed. Cir. 1994).
216. 448 F.3d 982 (Fed. Cir. 2007).
217. Beachcombers, 31 F.3d at 1160.
218. See id.
219. Id.
be unlikely to travel well from network to network. Nor should we ignore the fact that the alleged public use took place at the designer’s home, a paradigmatic private context,220 which not only makes further information diffusion even less likely, but also contributes to the emergence of reliable norms of confidentiality.

The result in Honeywell would also change. That case involved Honeywell’s terrain warning system,221 which helped prevent pilots from flying into mountains and which was demonstrated to potential customers and a reporter more than one year before patenting.222 The Federal Circuit found no public use because all demonstrations could be considered experimental. That rationale rings hollow: the demonstrations were for customers—more than 150 of them223—who, the court admitted, would be purchasing the technology in the future.224 It was more important to the court that Honeywell personnel conducted the demonstrations and “maintained control over them,”225 even though it is hard to imagine who else would be conducting the test runs. To make these demonstrations seem relatively private, the district court emphasized that there was no indication that the general public ever became aware of the technology.226 That a reporter was on board was irrelevant.

Social network and trust theory would conclude, from the totality of the circumstances, that Honeywell engaged in public use. The audience for its disclosure included members of the aviation industry who were likely going to purchase the system and a former pilot and aviation reporter who subsequently wrote an article about the technology. These are precisely the kind of weak ties that could both understand the technology and disseminate it; indeed, the writer’s job is to disseminate the information. There is also no indication, unlike, say, in Bernhardt,227 that the norms and customs of the aviation industry ensure that all parties share the burden of keeping information confidential. Additional evidence about industry norms and practice could be admitted to buttress or challenge that conclusion.

There are undoubtedly some closer calls, but additional evidence could help us apply the social network and trust model. In Lough, for example, where a boat repairman installed his new device on his friends’ boats,228 we would want to know more about these friends, their history with the inventor, and their proficiency with boat hardware and technology. We would also want to know whether others at the marina saw the invention and had enough time, know-how, and opportunity to copy it. In National Research Development Corp., where the inventor’s academic adviser disclosed his student’s invention to an acquaintance at an academic conference,229

221. Honeywell, 488 F.3d at 987.
222. Id. at 998.
224. Id. at 308.
225. Id.
226. Id.
227. Bernhardt, L.L.C. v. Collezione Europa USA, Inc., 386 F.3d 1371, 1381 (Fed. Cir. 2004); see also supra text accompanying notes 87–91.
228. 86 F.3d 1113, 1121 (Fed. Cir. 1996).
applying social network and trust theory would require additional evidence about the relationship between the parties. But this type of evidence is easily admitted, and the detour into social science is well worth the added fairness benefits.

In the end, social network and trust theory offer a fair and administrable approach to public use cases. The proposal resembles trade secrecy’s relative secrecy doctrine, brings intellectual property’s respect for social networks to a forgotten corner of patent law, and, in so doing, treats corporate and solo inventors equally and gives everyone a chance to contribute to the innovation economy. In some situations, cases would have come to different results under privacy-as-trust. But for most cases, the doctrine provides a robust intellectual foundation for reasoning through public use questions and helps ensure honest application of what was always meant to be a flexible standard for patent validity.

B. Responses to Potential Objections

Some might object to the structure or mode of analysis of privacy-as-trust as too indeterminate and inappropriate for patent law. Others might focus on the results, suggesting that the proposal would encourage risky business behavior and cut off more knowledge from the public domain, thus running counter to the goals of patent law. I respond to these objections in turn.

A totality of the circumstances test, one might argue, is too flexible and too indeterminate, providing too much discretion, too few guidelines, and no way to prevent a judge from imposing his personal preferences on a given case. This is a common refrain in diverse areas of law,230 but it rings hollow in this case. Totality of the circumstances tests, in general, allow fair and individual determinations of fact-specific cases. They are in use across intellectual property regimes.231 And even under the current standard, public use cases are supposed to be highly fact specific, depending on the inventor’s actions, the details of the disclosure, and whether she had the foresight and leverage to mandate nondisclosure. What’s more, the very deficiencies identified in this Article—discriminatory application of public use law to privilege corporate inventors over solo entrepreneurs—stem not from a boundless totality of the circumstances test, but a misapplication of the law through a bright-line

231. See, e.g., Chance v. Pac-Tel Teletrac Inc., 242 F.3d 1151 (9th Cir. 2001) (applying a totality of the circumstances test for determining priority in trademark law).
privacy-as-control standard. Although bright-line rules are undoubtedly more definite, this Article’s social network and trust approach comes with clear guidelines that limit the analysis to only relevant factors: the social context of disclosure, the information disclosed, and the relationships between the audience and the inventor and the audience and the information.

A second structural objection to this Article’s social network and trust proposal is that it imports a doctrine from unrelated areas of law and social science that address problems and policies distinct from patent law. I disagree. Not only did Sam Warren and Louis Brandeis refer to the doctrinal and theoretical relationships between intellectual property and privacy law more than 125 years ago, distinguished scholars in both fields have been learning lessons from each other ever since. Indeed, paraphrasing Jonathan Zittrain’s powerful argument, the “problem” of privacy and intellectual property is the same: information flow. In privacy, individuals seek to protect the dissemination of personal data; many privacy questions concern the wrongful disclosure of intimate information. The public use bar addresses a similar matter —namely, the diffusion of information about an invention via first-person disclosure. To answer these questions, both fields seek a way to draw the boundary between public and private after an initial, limited disclosure. Considering similar approaches, therefore, makes sense.

The final two objections concern the practical implications of employing a social network and trust approach to public use. Some might argue that by recognizing the norms of confidentiality of informal relationships between friends and intimates, this Article’s proposal would result in more findings of nonpublic use. But allowing more inventors to use their devices without the voluminous disclosures required in a patent application would run counter to the central goal of patent law, which is the

232. See supra text accompanying notes 49–54.
233. Nor has the Federal Circuit disclaimed a totality of the circumstances test in public use cases. Until the Supreme Court decided Pfaff v. Wells Electronics, Inc., 525 U.S. 55 (1998), the federal courts had been using a totality of the circumstances test to adjudicate both the public use and on-sale bars. Pfaff, an on-sale bar case, switched the standard to a “ready for patenting” test, but since the Court had no occasion to address public use, the totality of the circumstances remained good law for the public use bar. Id. at 67. But the Federal Circuit’s decision in SmithKline Beecham Corp. v. Apotex Corp., 365 F.3d 1306 (Fed. Cir. 2004), vacated en banc, 403 F.3d 1328 (Fed. Cir. 2005), aff’d on other grounds, 403 F.3d 1331 (Fed. Cir. 2005), opted to apply the Supreme Court’s on-sale rule to public use. Id. at 1316. Still later, the Federal Circuit appeared to return to a totality of the circumstances test in Bernhardt, L.L.C. v. Collezione Europa USA, Inc., 386 F.3d 1371, 1379 (Fed. Cir. 2004), and in Dey, L.P. v. Sunovion Pharmaceuticals, Inc., 715 F.3d 1351, 1355 (Fed. Cir. 2013). In Invitrogen Corp. v. Biocrest Manufacturing, L.P., 424 F.3d 1374 (Fed. Cir. 2005), the Federal Circuit offered a middle ground that ultimately retained the totality of the circumstances test for determining public use. The court stated that the “proper test” for public use is “whether the purported use: (1) was accessible to the public; or (2) was commercially exploited.” That said, determining “publicness” under prong (1) required falling back on the totality of the circumstances test described above. Id. at 1380.
235. See, e.g., Zittrain, supra note 40.
236. See id. at 1203.
TRUST: A MODEL FOR DISCLOSURE IN PATENT LAW

2017

237. This argument misreads the data and misses the point of privacy-as-trust. As discussed above, some public and nonpublic use cases would come to same results under a social network and trust approach. The proposal is merely a mode of analysis that also addresses inequality in the application of current public use law. If it does result in more solo entrepreneurs being allowed to retain their patents, so be it: the PTO has already recognized the need to improve access by part-time inventors and hobbyists, and the progress of science and technology in society, the salient and overarching purpose of the patent system, could only benefit.

Some may argue, too, that even if secrecy commitments are not always possible, codifying norms of confidentiality as adequate replacements encourages risky behavior. The law, the argument continues, should incentivize corporate and solo entrepreneurs alike to take every necessary precaution to secure their inventions, and downplaying confidentiality agreements does the opposite. I resist the temptation to use a discriminatory weapon as a paternalistic tool, especially one that has a disparate impact on entrepreneurs. Focusing on the context of disclosure encourages risky behavior no more than privacy law does when it allows individuals to rely on their legitimate expectations of privacy. And the elevation of confidentiality agreements to near determinative status is less a tool of social policy than a giveaway to corporate entities that have the leverage to employ them. A social network and trust model for public use, therefore, does not so much encourage bad behavior as implement an egalitarian approach to patentability.

CONCLUSION

Current public use law tends to privilege corporate inventors over solo entrepreneurs. It does so by employing a privacy-as-control model for determining when a prepatenting disclosure or use was sufficiently public to invalidate a patent, elevating confidentiality agreements to near determinative status and respecting the confidentiality norms of industry while ignoring the different, yet equally as powerful norms of individuals. This Article proposes a new way of thinking through and adjudicating
public use cases by employing a privacy-as-trust model. This approach recognizes that disclosure is a contextual, fact-specific social phenomenon that can only be evaluated through the lens of social science, specifically social network theory and trust. An administrable model that focuses on the social context of disclosure, the relationship between the inventor and her audience, and the relationships between the audience and the information disclosure is proposed, as well. As applied, privacy-as-trust may change results in some cases, but more importantly, it will provide a coherent, predictable, and fair method for analyzing public use cases.

Research into the role of social network theory and trust, in general, and in intellectual property law, specifically, must continue. With respect to public use, this Article has not considered questions of institutional competence, or whether judges or juries are more capable of the social science analysis proposed herein. As for other questions across the intellectual property spectrum, future scholarship will tease out the role of social networks and trust in trademark, copyright, and trade secret law. And the importance of trust in other areas of law must be teased out, a project on which several scholars are already engaged. Needless to say, this Article is one step in a larger research journey. But when it comes to public use law, social network and trust theory offer a practical, egalitarian, and honest way forward.